ABSTRACT

The theoretical methodologies and numerical results of quaternion estimation (QUEST) algorithms for the GPS-based attitude determination of a low-earth-orbit gyrostat satellite are presented. The attitude tumbling of the gyrostat satellite is suppressed with the proposed linear regulators. The numerical techniques for the generation of angular velocities of the gyrostat satellite and the determination of the attitude are investigated. The simulation results indicate that QUEST algorithms can be employed to accurately estimate the attitude of the gyrostat satellite point by point, when combined with the GPS phase-difference signals. Under the appropriate assumption of measurement noises at the GPS phase-difference signals the precision of the attitude estimates is assessed to be at the level of 0.5 degrees for the attitude motions of the gyrostat satellite. The results from the theoretic simulation in this chapter can be used to validate the algorithms of the integer offset time biases and the assumption of line-of-sight measurement noises and baseline calibration.