ABSTRACT

Many observational studies have shown that plankton act as “intelligent” organisms in the sense that they cope with their environment. Plankton move autonomously to accommodate various changes in their environment, such as temperature, nutrients, and turbulence. They alter their behavior or behavior patterns in response to environmental variation, but such behavior switching is not described by simple linear relationships with a few environmental factors. Dinoflagellates, for example, often are described as phytoplankton, which exhibit a regular diel migration pattern characterized by near-surface aggregations during daylight hours. On the other hand, many observational studies have shown that the diel migration can be irregular, in response to changes in the physical/chemical environment (Kamykowski, 1981; Cullen and Horrigan, 1981). Laboratory observations on zooplankton have pointed out relations between small-scale turbulence and changes in their behavior (Castello et al., 1990; Saiz et al

.