ABSTRACT

Physalia physalis, the Portuguese man of war, consumes mostly fish and fish larvae. Intracellular recordings from nematocyst-containing cells (cnidocytes) in small pieces of Physalia tentacle were used to quantify the electrical responses to diluted and filtered fish skin mucus, 1–100 × 10−6 M amino acids, monosaccharides, and nucleosides, and seawater, which were delivered upstream of the tissue. Seawater caused responses (one pulse only) in about 10% of the applications. Fish mucus extract elicited responses in all applications, producing 1–18 depolarizing pulses (20 mV maximum amplitude). The pulses were characteristic of post-synaptic potentials (EPSPs). Lucifer yellow and biocytin dye injections showed that the cnidocytes were not electrically coupled. Simultaneous records from two cnidocytes following mucus applications were identical. We propose, therefore, that the chemoreceptors are not on the cnidocytes, but are probably on sensory neurons that innervate clusters of cnidocytes. A < 3,000 MW fraction of mucus elicited responses indistinguishable from whole mucus extract. Higher molecular weight fractions caused no response. The various test solutions had lower percentages of response (47–92%) and produced significantly fewer pulses than the mucus extract. We conclude that prey capture in Physalia is facilitated by chemicals present in the mucus covering their fish prey. The chemical stimuli probably sensitize the nematocysts to discharge upon mechanical stimulation.