ABSTRACT

Fazio et al. (2007) investigated an IFC based framework for delivering building envelope data to a set of simulation engines, showing that it is feasible to automatically derive the required geometrical and material layer information from a BIM application. However, the procedure focuses on the building envelope and less on three-dimensional, space-related issues. In contrast, the research of Lam et. al. (2006) does take the spaces defined by their enclosing constructions into account, and uses them as a start point for the thermal simulation. However, they make rather far going simplifying assumptions concerning the bounding construction geometry. It is precisely this aspect which is addressed in the current contribution. We target the faithful and complete generation of both the internal and external geometry of space-based models as well as their material properties, so to enable accurate calculation of the building energy performance.To realize such a system, various issues have to be faced, notably (i) the ability of contemporary BIM environments to capture and, most importantly, to export the required information, and (ii) the ability to deploy vendor-neutral formats to convey the information to the processing software. These issues are addressed, a

prototype of such a system was actually built and is briefly presented.