ABSTRACT

Chromatography is a general term applied to a wide variety of separation techniques based on the sample partitioning between a moving phase, which can be a gas, liquid, or supercritical fluid, and a stationary phase, which may be either a liquid or a solid. The discovery of chromatography is generally credited to Tswett (1), who in 1906 described his work on using a chalk column to separate pigments in green leaves. The term ‘‘chromatography’’ was coined by Tswett to describe the colored zones that moved down the column. The technique languished for years, with only periodic spurts of development following innovations such as partition and paper chromatography in the 1940s, gas and thin-layer chromatography in the 1950s, and various gel or size-exclusion methods in the early 1960s (2). Then in January 1969, the Journal of Gas Chromatography officially changed its name and became the Journal of Chromatographic Science. This change reflected the renewed interest in the technique of liquid chromatography (LC) and officially signaled the beginning of the era of modern LC. This renewed interest in the oldest of chromatographic techniques was brought about both because of the successes and because of the failures of gas chromatography (GC). On the one hand, GC provided a firm theoretical background on which

88 Stout and Dorsey

modern LC could build. However, this renewed interest in LC was being driven because of the inability of GC to handle thermally unstable or nonvolatile compounds. It has been estimated that fewer than 20% of organic compounds have sufficient volatility and thermal stability to traverse a GC column successfully. Admirers of LC also liked the selective interaction of its two chromatographic phases, and easy sample recovery because of its nondestructive detection methods and room-temperature operation.