ABSTRACT

In order to improve oil and water repellency, silicone-containing block copolymers, composed of methyl-methacrylate (MMA), glycidylmethacrylate (GMA), and polydimethylsiloxanemethacrylate (SMA), were blended in an epoxy resin. It was expected that the low surface energy dimethylsiloxane segments would adsorb and orient at the exterior of the resin to make a thin surface phase and the glycidyl groups would mesh with the epoxy resin by primary bonding. The techniques of X-ray photoelectron spectroscopy (ESCA), dynamic contact angle (DCA) and peel strength measurements of pressure sensitive adhesives were used to characterize the modified epoxy resin surface phases. The amount of Si2p obtained via angular dependent ESCA investigation in the near surface region of the modified resin increased with decreasing sampling depth. With an increase in modifier content, both the amount of Si2p and O1s also increased. Both advancing and receding contact angles for an aluminum plate coated with The peel strength of a pressure sensitive adhesive tape affixed to the modified epoxy resin decreased dramatically with increasing modifier content. It was found that these copolymers were good surface modifiers to improve oil and water repellency and that they acted as release agents.