ABSTRACT

Three-dimensional dynamic anatomical modeling of the human musculo-skeletal joints is a versatile tool for the study of the internal forces in these joints and their behavior under different loading conditions following ligamentous injuries and different reconstruction procedures. This chapter describes the threedimensional dynamic response of the tibio-femoral joint when subjected to sudden external pulsing loads utilizing an anatomical dynamic knee model. The model consists of two body segments in contact (the femur and the tibia) executing a general three-dimensional dynamic motion within the constraints of the ligamentous structures. Each of the articular surfaces at the tibio-femoral joint is represented by a separate mathematical function. The joint ligaments are modeled as nonlinear elastic springs. The six-degrees-of-freedom joint motions are characterized using six kinematic parameters and ligamentous forces are expressed in terms of these six parameters. In this formulation, all the coordinates of the ligamentous attachment points are dependent variables which allow one to easily introduce more ligaments and/or split each ligament into several fiber bundles. Model equations consist of nonlinear second order ordinary differential equations coupled with nonlinear algebraic constraints. An algorithm was developed to solve this differential-algebraic equation (DAE) system by employing a DAE solver, namely, the Differential Algebraic System Solver (DASSL) developed at Lawrence Livermore National Laboratory.