ABSTRACT

The classical limit-point, limit-circle theory of Weyl [20] is concerned with the L2 (0, ∞) solutions of the differential equation https://www.w3.org/1998/Math/MathML"> M y = λ y https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429332623/d03ac290-bd50-452e-ba31-4edd6e078f1a/content/eqn1.tif" xmlns:xlink="https://www.w3.org/1999/xlink"/> over [0, ∞), where https://www.w3.org/1998/Math/MathML"> M y = − p y ′ ′ + q y , https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429332623/d03ac290-bd50-452e-ba31-4edd6e078f1a/content/eqn2.tif" xmlns:xlink="https://www.w3.org/1999/xlink"/> λ is a strictly complex parameter and p, q are real-valued functions which satisfy p-1,https://www.w3.org/1998/Math/MathML">q∈Lloc1(0,∞)https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429332623/d03ac290-bd50-452e-ba31-4edd6e078f1a/content/ieq0367.tif" xmlns:xlink="https://www.w3.org/1999/xlink"/>. Weyl showed that the mapping z → Fx(λ,z), X > 0 defined by https://www.w3.org/1998/Math/MathML"> F X ( λ , z ) = − θ ( X , λ ) z − θ ′ ( X , λ ) ϕ ( X , λ ) z − ϕ ′ ( X , λ )   ( λ ∈ C ± ) , https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429332623/d03ac290-bd50-452e-ba31-4edd6e078f1a/content/eqn0450.tif" xmlns:xlink="https://www.w3.org/1999/xlink"/> maps the real line onto the boundary of a circle CX ≡ CX(λ) in C, where θ(x,λ) and ϕ(x,λ) are the solutions of (1) which satisfy https://www.w3.org/1998/Math/MathML"> θ ( 0 ) = 0 ,   θ ′ ( 0 ) = 1 ,   ϕ ( 0 ) = = 1 ,   ϕ ′ ( 0 ) = 0 , https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429332623/d03ac290-bd50-452e-ba31-4edd6e078f1a/content/eqn3.tif" xmlns:xlink="https://www.w3.org/1999/xlink"/> 198and the diameter dx (λ) of the circle Cx (λ) is https://www.w3.org/1998/Math/MathML"> d X ( λ ) = | im λ ∫ 0 X ϕ 2 d x | − 1 ,         im  λ ≠ 0 . https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429332623/d03ac290-bd50-452e-ba31-4edd6e078f1a/content/eqn4.tif" xmlns:xlink="https://www.w3.org/1999/xlink"/> The circles dx(λ) are nested in the sense that Cx(λ) lies within Cy (λ) when X > Y and so as X→ ∞, Cx(λ) tends either to a point m(λ) (the so-called limit-point) or a circle (the limit-circle). The classification is independent of λ ∈ C\R. We shall be concerned only with the limit-point case. In this case there is, up to constant multiples, precisely one L2 (0, ∞) solution of (1) for λ ∈ C \ R, and this is https://www.w3.org/1998/Math/MathML"> ψ ( x , λ ) = θ ( x , λ ) + m ( λ ) ϕ ( x , λ ) . https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429332623/d03ac290-bd50-452e-ba31-4edd6e078f1a/content/eqn5.tif" xmlns:xlink="https://www.w3.org/1999/xlink"/> The m(-) is the Titchmarsh-Weyl function.