ABSTRACT

RC bridges near Japan coastal regions deteriorate due to chloride-induced steel corrosion. In such severe airborne chloride environments, RC bridges demand frequent maintenance activities to preserve the desired structural performance. However, maintenance cost causes a surge in their lifetime cost. Resource scarcity is amplifying the need to search for better corrosion-resistance material than carbon steel (CS) rebar. With superior corrosion resistance, stainless steel (SS) rebar can be a better alternative. Nevertheless, its high initial cost raises the initial cost of RC structures. As airborne chloride attenuates with the distance from the coastline, it is essential to develop an approach to integrate the chloride hazard assessment into the life-cycle cost (LCC) analysis for considering cost-effective application of SS rebar. This paper aims to establish a probabilistic LCC method for identifying the suitable distance from the coastline for SS rebar application in RC bridges under an airborne chloride environment.