ABSTRACT

In Bolton, mechatronics is defined as the integration of electronics, control engineering, and mechanical engineering, thus recognizing the fundamental role of control in joining electronics and mechanics. A robot is commonly considered as a typical mechatronic system, which integrates software, control, electronics, and mechanical designs in a synergistic manner. Robotics can be considered as a part of mechatronics; i.e., all robots are mechatronic systems, but not all mechatronic systems are robots. Advanced robots usually plan their actions by combining an assigned functional task with the knowledge about the environment in which they operate. By using a simplified approach, advanced robots could be defined as mechatronic devices governed by a smart brain, placed at a higher hierarchical level. Actuators are building blocks of any mechatronic system. Such systems, however, have a huge application span, ranging from low-cost consumer applications to high-end, high-precision industrial manufacturing equipment.