ABSTRACT

Microbes have evolved many fascinating and complex ways of interacting with conspecifics. Perhaps one of the most interesting is aggregative multicellularity, wherein independent cells come together and adhere to one another in order to form a larger entity. The fundamental benefits of active aggregation into multicellular groups generally remain unclear, and there are many open questions about what selective pressures led to the evolution of this behavior in various eukaryotic and prokaryotic taxa, most notably the dictyostelids and the myxobacteria. Aggregative multicellularity can be partitioned into three main phases: coming together, staying together as a group, and disaggregation. Different selective pressures may have led to adaptations unique to each phase. While aggregative microbial systems generally form elevated multicellular structures such as fruiting bodies, these can vary in complexity and morphology even among closely related species. What evolutionary forces shaped such morphological diversification remains unknown. Strains that are not genetically identical can co-aggregate, which can impact group-level function either positively through functional synergy or negatively through harmful exploitation. Such chimerism within aggregates is likely to have played important roles in shaping the evolution of microbial multicellularity. Much further research is needed into the evolutionary forces and processes leading to and shaping the many forms of microbial aggregation.