ABSTRACT

A novel and highly-efficient prestressed composite flooring system comprising cold-formed steel joists and wood-based floorboards is introduced herein. The prestressing is applied by means of a high-strength steel cable housed within the bottom hollow flange of the steel joist, while the composite action is mobilised by making simple alterations to the currently employed fastening arrangements between the joist and the board. Geometrically and materially nonlinear finite element models with initial geometric imperfections have been developed to simulate the behaviour of the proposed system during the prestressing and vertical loading stages. The structural performance of the prestressed system is compared with that of conventional non-prestressed systems, demonstrating that substantial benefits can be achieved both in terms of load-carrying capacity and serviceability performance. Subsequently, a parametric study is conducted to investigate the effect of the steel section thickness on the ultimate moment capacity and bending stiffness of the system.