ABSTRACT

This paper presents the use of external dampers for vibration mitigation of railway bridges subjected to passing trains. A numerical model of the bridge combined with an experimental setup of a full-scale magnetorheological damper is used. The combined bridge-damper system is analyzed in real-time using a hybrid simulation technique. The approach is illustrated on a simply supported steel-concrete composite bridge. Due to the large eccentricity between the neutral axis and the roller support, the resulting displacement motivates the use of a near support damper. It is shown that sufficient vibration mitigation can be obtained with a single damper. A parametric study is performed to determine the optimal damper position and inclination.