ABSTRACT

The application of Computational Fluid Dynamics (CFD) is the fastest developing area in marine fluid dynamics as an alternative to Experimental Fluid Dynamics (EFD). While EFD employs well-established methods for predicting a ship’s performance, CFD is still challenged to reach a reliable level of accuracy in a reasonable amount of time. In the present study, this issue is addressed in the context of trim optimization by exploring the combination of time-inexpensive potential flow simulations with high-fidelity Unsteady Reynolds-Averaged Navier-Stokes (URANS) simulations. This approach allowed covering a broad fore body design space by running a large number of potential flow simulations while at the same time important flow effects due to viscous forces were included by running URANS simulations over the full speed range for a small set of simulations. The KCS baseline design results were validated against an experimental towing tank dataset ensuring a valid CFD setup and thus demonstrating its competitiveness to EFD.