ABSTRACT

Whether proteins are intentionally immobilized to solid surfaces to serve, e.g., an analytical or preparative purpose or whether they have just by happenstance come in contact with a foreign surface, the steep gradient in chemical composition that reigns at the interface can have a more or less debilitating influence on their structure. Because of the enormous practical importance of biologically active surfaces in areas such as irnmunodiagnosis, biosensor development, and the design of selective adsorbents for protein mapping, recent decades have witnessed a large research effort devoted to broadening our understanding of how to maintain structural integrity and functionality of interfacial proteins. In addition to the maintenance of active antibodies, enzymes, affinity anchors, and cell adhesion molecules on solid surfaces, much attention has also been devoted to the suppression of unwanted adsorption of inconsequential or destructively interfering proteins.