ABSTRACT

Ever since Drude summarized his theory for the reflection of polarized light, thereby forming the foundation for ellipsometry and reflectometry [1,2], polarized light has held promise as a useful tool for characterizing surfaces and for probing interfacial structures and processes. It was only about 50 years ago, however, that ellipsometry was initially developed as an experimental technique [3]. This was mainly due to the requirement for a numerical procedure for solving the equations and determining the adsorbed layer thickness and refractive index. During the last few decades, however, both ellipsometry and reflectometry, but also other techniques based on reflection such as optical waveguide spectroscopy, total internal reflection microscopy, and Brewster angle microscopy, have found versatile use in studies of interfacial structures and events [3-7]. Perhaps of particular importance in relation to this has been the use of these techniques for studying protein and biopolymer adsorption. In the following chapter, the basis for ellipsometry and reflectometry is briefly outlined and some experimental considerations discussed. Following this, a few selected examples are provided where ellipsometry and reflectometry have proven useful for describing and analyzing protein and biopolymer adsorption. Note, however, that a complete coverage of the field is not intended. Instead, examples are chosen to illustrate more general points.