ABSTRACT

The rapid, irreversible adsorption of proteins onto solid surfaces from biological media is a well-known phenomenon. Upon implantation of a biomedical device, for example, a layer of adsorbed protein immediately forms on the surface of the biomaterial [1]. This layer of adsorbed proteins directs subsequent biological responses to the material. Nonspecific adsorption of proteins in biomedical applications can result in a variety of undesirable consequences including bacterial adhesion [2-4], calcium-containing deposits on biomaterial surfaces [5], and biomedical device toxicity [6]. The adsorbed protein layer can also influence animal cell adhesion [7-9] and subsequent tissue integration or rejection [10] of the implant. The composition, concentration, conformation, orientation, and spatial distribution of adsorbed proteins all affect and mediate subsequent biological reactions to the surface. Protein adsorption is important also in for example the biofouling of water purification, transport, and storage systems and on marine structures and vessels both static and moving.