ABSTRACT

CONTENTS Introduction: Microbial Gut Flora and Lipid Homeostasis . . . . . . . . . . . . . . . . 202 Effect of Prebiotics on Lipid Metabolism: Experimental Studies

in Animals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 Effect on Fatty Acid and TAGMetabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Effect on Serum and Hepatic TAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 Biochemical Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Effect on Cholesterol Homeostasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 Effect on Pathologies Associated with Disturbances of Lipid

Metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 Prebiotics as a Potential Treatment against

Atherosclerosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 Prebiotics as Modulators of Lipid Metabolism Disorders

Associated with Inflammation . . . . . . . . . . . . . . . . . . . . . . . . 205 Prebiotics as Potential Treatment against Obesity . . . . . . . . . . . . 206

What is the Link between the Effect of Prebiotics inside the Gut and Their Effect on Lipid Homeostasis? . . . . . . . . . . . . . . . . . . . . . . . 207 Implication of Energy Intake and Energy Expenditure on

the Fat-Reducing Effect of Prebiotics . . . . . . . . . . . . . . . . 207 Link Between Gut Microbiota and Lipid Metabolism . . . . . . . . 208 What is the Role of Short-Chain Fatty Acids in the

Modulation of Lipid Metabolism by Prebiotics? . . . 208 Effect of Prebiotics on Lipid Metabolism: Data Available

in Humans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

8171: “chap10” — 2007/12/3 — 18:09 — page 202 — #2

of

Recent data have been published, showing that gut flora composition is different in obese and nonobese individuals.1 In humans, the relative proportion of Bacteroidetes versus Firmicutes is decreased in obese people in comparison to lean people, and this proportion increases with weight loss on two types of low-calorie diet (low carbohydrates or low fat diet). In mice that are genetically obese (leptin-deficient ob/ob mice), the amount of Bacteroidetes is half the value counted in their lean siblings.2 These changes in bacterial composition-observed both in obese humans and animals-were division-wide, whereas bacterial diversity remained constant over time; no blooms or extinctions of specific bacterial species were observed in obese versus lean individuals, or after dietary (low calorie) intervention.1