ABSTRACT

This chapter describes how the methanol and formic acid (FA) in the fuel cell system aimed to develop novel ideal clean energy sources as suitable alternatives than other renewable energy sources. Based on the systematic study on various types of fuel cells, the concerned chapter will be exported to describe the importance of methanol, formic acid oxidation (FAO) than other else. Specifically, this chapter focuses on the role of different shapes of noble metal nanoparticles (NPs) for electrocatalytic activity towards methanol and FAO. NPs modified on the carbon supporting materials like graphene substrate possesses high electrocatalytic activity and durability in fuel cell than the individual ones. Among all carbon supporting materials the basic design of FA and methanol oxidation fuel cell with Pd, Pt , Ru, Au-Pd alloy, and AuNPs with graphene substrate finding an appropriate way to choose the best catalyst on basis of low cost, high activity, and high stability. We here also highlight a systematic approach in recent studies on methanol and FAO with their basic mechanistic principles for better understanding. The main objective of the study is on methanol and FA fuel cell by employing conventional and advanced electrochemical methods than other methods. A combined potential step, fast cyclic Voltammetry experiment, and electrochemical impedance spectroscopy (EIS) were employed to study the production of electric current by NPs catalysts in methanol and FAO. This chapter discusses facile and eco-friendly synthesis methods of metal 290NPs, various techniques used for characterization, and their electrocatalytic applications towards methanol oxidation and FAO.