ABSTRACT

Since its first description in 1892, the adaptation of internal bone structure to changing loading conditions over time, known as Wolff's Law, has inspired a wide range of research and imitation. This investigation presents a new bone-inspired algorithm, intended for the structural design of technical structures and capable of optimizing the shape and size of three-dimensional lattice structures. Unlike conventional structural optimization methods, it uses interacting artificial agents that closely follow the cellular behaviour of the biological blueprint. Agents iteratively move, alter cross-sections, and reposition axes in the latticework. The efficacy of the algorithm is tested and evaluated in two case studies. This agent-based approach lays the theoretical foundation for an implementation of adaptive structural building components and provides a tool for further research into the spatial aspects of natural ossification.