ABSTRACT

The work is devoted to the study of the formation processes and analysis of the structure of a superconducting spin valve based on a multilayer superconductor-ferromagnet nanostructure. The relevance of the research is due to the need to develop an energy-efficient element base for microelectronics, based on new physical principles and the advent of devices, based on spin and quantum-mechanical effects. The superconducting spin valve being developed is a multilayer structure consisting of ferromagnetic cobalt nanofilms, which are separated by niobium superconductors. The studies were carried out using molecular dynamics modeling. As the interaction 188potential of atoms in the simulated system, the modified immersed atom method is used. The spin valve was formed by layer-by-layer deposition of elements in a vacuum. The atom deposition process was simulated in a stationary temperature regime. The chapter presents a simulation of the deposition of the first few layers of a nanosystem. The atomic structure of individual nanolayers of the system is considered. Particular attention is paid to the analysis of the atomic structure of contact areas at the junction of the layers since the quality of the layer interface plays a crucial role in creating a workable device. Three temperature deposition regimes were implemented: 300, 500, and 800 K. Calculations showed that with an increase in temperature, there is a rearrangement of the structure of the system layers and their loosening. The structure of the nanolayer from niobium is close to crystalline with division into regions of different crystallographic orientations of atomic layers. For cobalt nanofilms, an amorphous structure is more characteristic. The obtained simulation results can be used in development. as well as optimization of technologies for the formation of spin valves and other functional elements for spintronics.