ABSTRACT

Colloidal crystals can be assembled using a variety of entropic [1–3], depletion [4, 5], electrostatic [6–8], or biorecognition forces [9–12] and provide a convenient model system for studying crystal growth. Although superlattices with diverse geometries can be assembled in solution and on surfaces, the incorporation of specific bonding interactions between particle building blocks and a substrate would significantly enhance control over the growth process. Herein, we use a stepwise growth process to systematically study and control the evolution of a body-centered cubic (bcc) crystalline thin film comprised of nanoparticle building blocks functionalized with DNA on a complementary DNA substrate. We examine crystal growth as a function of temperature, number of layers, and substrate–particle bonding interactions. Importantly, the judicious choice of DNA interconnects allows one to tune the interfacial energy between various crystal planes and the substrate, and thereby control crystal orientation and size in a stepwise fashion using chemically programmable attractive forces. This is a unique approach since prior studies involving superlattice assembly typically rely on repulsive interactions between particles to dictate structure, and those that rely on attractive forces (e.g., ionic systems) still maintain repulsive particle-substrate interactions.