ABSTRACT

Let Ω be a bounded open set of ℝn (n = 2, 3) with sufficiently smooth boundary Γ = ∂Ω, which is assumed to consist of two disjoint parts Γ1 and Γ2, with meas(Γ1) > 0. The flow of an incompressible Bingham fluid in stationary case is described by

the incompressibility equation https://www.w3.org/1998/Math/MathML"> d i v   u = u i , i = ∑ i = 1 n ∂ u i ∂ x i = 0          in          Ω; https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781003062240/a6b2dc90-37e3-4130-a669-09768d846a56/content/eqn1.tif" xmlns:xlink="https://www.w3.org/1999/xlink"/>

the equation of motion where, for simplicity, we take the constant density p = 1, https://www.w3.org/1998/Math/MathML"> u j u i , j = f i + σ i j , j          in          Ω         ( i = 1 , … , n ) ; https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781003062240/a6b2dc90-37e3-4130-a669-09768d846a56/content/eqn2.tif" xmlns:xlink="https://www.w3.org/1999/xlink"/>

the constitutive law: https://www.w3.org/1998/Math/MathML"> σ i j = − p δ i j + 2 μ D i j + g D i j D I I 1 2 ⇔ D I I > 0 σ i j = − p δ i j ⇔ D I I = 0 ; https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781003062240/a6b2dc90-37e3-4130-a669-09768d846a56/content/eqn3.tif" xmlns:xlink="https://www.w3.org/1999/xlink"/> where u = (ui) represents the velocity field, σ = (σij) the stress tensor, ƒ = (ƒi) the body forces, D = (Dij) the rate of strain tensor, given by https://www.w3.org/1998/Math/MathML">Dij(u)=12ui,j+uj,i,DII=12DijDijhttps://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781003062240/a6b2dc90-37e3-4130-a669-09768d846a56/content/ieq1073.tif" xmlns:xlink="https://www.w3.org/1999/xlink"/> denotes the pressure, µ the viscosity and g the threshold of plasticity;

and the boundary conditions https://www.w3.org/1998/Math/MathML">  on Γ 1 : u = 0 https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781003062240/a6b2dc90-37e3-4130-a669-09768d846a56/content/eqn4.tif" xmlns:xlink="https://www.w3.org/1999/xlink"/> https://www.w3.org/1998/Math/MathML">  on Γ 2 :         u N = 0 https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781003062240/a6b2dc90-37e3-4130-a669-09768d846a56/content/eqn5.tif" xmlns:xlink="https://www.w3.org/1999/xlink"/> https://www.w3.org/1998/Math/MathML">  and  σ T < k σ N ⇒ u T = 0 σ T = k σ N ⇒ ∃ λ ≥ 0         u T = − λ σ T https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781003062240/a6b2dc90-37e3-4130-a669-09768d846a56/content/eqn6.tif" xmlns:xlink="https://www.w3.org/1999/xlink"/> where n = (ni) is the unit outward normal to Γ, and https://www.w3.org/1998/Math/MathML"> u T = u − u N n         ,         u N = u i n i σ T i = σ i j n j − σ N n i         ,         σ N = σ i j n i n j = ( σ . n ) . n https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781003062240/a6b2dc90-37e3-4130-a669-09768d846a56/content/eqn0701.tif" xmlns:xlink="https://www.w3.org/1999/xlink"/> are, respectively, the tangential and normal velocity, the components of the tangential stress tensor and the normal stress. The boundary condition (4) corresponds to the adherence to the boundary Γ1 and the condition (6) is the usual friction law of Coulomb 238(see [DL]) ‚ where k is a friction coefficient, in addition to the no flux condition (5) across Γ2