ABSTRACT

We discuss high resolution two-dimensional near-field images of the neon-like nickel and germanium x-ray laser. The Asterix iodine laser, using a prepulse 5.23 ns before the main pulse, was used to irradiate slab targets. Our imaging diagnostic consisted of a concave multilayer mirror that imaged the x-ray laser line (with a magnification of ten) onto a backside illuminated x-ray CCD detector. A great deal of structure was observed in the near field images, particularly in the J=0-1 emission. We observed a large difference in the spatial dependence of the J=0-1 and J=2-l lines of germanium, with the J=2-l emission peaking farther away from the original target surface. The prepulse level was varied and observed to have a significant effect on the spatial dependence of the germanium and nickel laser lines. A larger prepulse moved the peak emission farther away from the target surface. These measurements are generally consistent with hydrodynamic simulations coupled with atomic kinetics.