ABSTRACT

Despite the existence of many historic buildings containing drystack walls, this walling system is not regarded as a legitimate masonry in many national standards. Unlike the thick historic drystack walls, the thin contemporary drystack walls require rendering to survive unavoidable eccentricities in the vertical compression loading and lateral loads. Commonly used fibre reinforced mortar composite (FRMC) render fails due to delamination and brittle splitting. Authors have developed mortar-auxetic fabric composite (MAFC) render as an alternative rendering that eliminates delamination. To illustrate the difference between the MAFC and FRMC, wallettes with these renders were analysed under compression and the numerical model results were validated through available experimental data on FRMC rendered drystack wallette. The mortar-auxetic composite (MAFC) render has shown to improve the response of the wallette under concentric compression through elimination of delamination. This render was then employed to analyse the mortar-auxetic composite rendered drystack wallettes subjected to eccentric compression. A traditional mortared masonry wallette without any render was also analysed as a benchmark case. Mortar-auxetic fabric rendered wallettes exhibited less sensitivity to eccentricity compared to the unrendered traditional mortared masonry under eccentric compression. It is shown that the drystack masonry walls rendered on both sides can resist much larger eccentricity to compression loading compared to the traditional mortared masonry walls. Considering the economic benefits of dry stack construction and based on the structural benefits illustrated in this paper, it appears sensible to recognise dry stack as a valid masonry system in the design standards.