ABSTRACT

This paper presents an experimental campaign to understand the in-plane shear characteristics of clay-unit masonry walls subjected to quasi-static horizontal cyclic loading. The test matrix involves a total of 9 full-scale masonry walls with two major parameters studied, first three different mortar types and second three different aspect ratios. Cement mortar used in modern masonry construction to lime mortar used in historical masonry structures are utilized. Further, the specimens cover aspect ratios of 0.63, 0.95 and 1.93. Walls with cement mortar showed flexural rocking failure mode and the ones with lime mortar showed diagonal shear cracking. The observed failure modes were irrespective of the different aspect ratios. The peak horizontal shear loads recorded for modern construction walls were more than 40% of the historical walls. Historical walls with lime mortar with extensive diagonal shear cracking showed higher energy absorption and equivalent damping compared to their modern counterparts.