ABSTRACT

The need for scientific ice drilling in glaciers and ice sheets has been driven by many fields of science, including drilling ice cores for evidence of past environment and paleoclimate information, and drilling access holes through the ice to gather data relevant to glacial dynamics, history of glacier extent, sediment sampling, and discovery of ecosystems within and beneath the ice. Many nations have contributed to drilling technologies relevant to each of these fields, and developments in any one nation often build on prior designs from other nations. A description of the very early polar ice coring endeavors in Greenland and Antarctica is provided in Langway (2008). Ice drilling and coring technologies that were developed before 2008 are well described in Bentley et al. (2006), including a wide array of ice coring drills, drills designed to create holes in ice only, and autonomous instruments that melt their way through ice. The text by Talalay (2016) provides a review of mechanical ice drilling technology that includes design, parameters, and performance of an assortment of tools and drills for making holes in snow, firn, and ice. Described in detail are direct-push drilling, hand- and power-driven portable drills, percussion drills, conventional machine-driven rotary drill rigs, flexible drill-stem drill rigs, cable-suspended electromechanical auger drills, cable-suspended electromechanical drills with bottom-hole circulation, and drilling challenges and perspective for future development.