ABSTRACT

Offshore wind farm operators need to make short-term decisions on planning vessel transfers to turbines for preventive or corrective maintenance. These decisions can play a pivotal role in ensuring maintenance actions are carried out in a timely and cost-effective manner. The present optimization of offshore vessel transfer uses mathematical models rather than learning decisions from historical data. In this paper, we design a simulated environment for an offshore wind farm based on Supervisory Control & Acquisition (SCADA) data and alarm logs of historical faults in an operational turbine. Firstly, we utilise a state-of-art decision tree model to predict fault types using SCADA features, and provide explainable decisions. Next, we apply deep reinforcement learning to automatically learn maintenance priorities corresponding to different fault types for ensuring prioritized vessel transfers for critical conditions, and deciding on optimal vessel fleet size. This can lead to significant savings in maintenance costs for the offshore wind industry.