ABSTRACT

In this chapter, we discuss alarming epidemiological and experimental data on carcinogenic effects of long-term non-thermal exposure to man-made electromagnetic fields (EMFs) and corresponding electromagnetic radiation (EMR), mainly from wireless communication (WC) systems, termed as WC EMFs and WC EMR, respectively. Moreover, since all WC EMFs/EMR include Extremely Low Frequency (ELF) components in the form of pulsations and modulation, the chapter also examines corresponding data from purely ELF man-made EMFs. During the past two decades, a number of scientific reports have revealed that, under certain conditions, non-thermal exposure to WC EMFs/EMR or modulated microwaves (MMWs) can substantially induce cancer progression in humans and animals. The carcinogenic effect of WC EMFs is typically manifested after long-term (usually ≥ 10 years) exposure, e.g., in mobile phone users. Nevertheless, even a year of operation of a powerful base station for mobile telephony (MT) reportedly resulted in a dramatic increase of cancer incidence among the population living nearby. In addition, studies in rodents unveiled a significant increase in carcinogenesis after 17–24 months of MMW exposure both in tumor-prone and intact animals. Data on widely accepted molecular markers of carcinogenesis confirm that exposure to non-thermal levels of MMWs or ELF man-made EMFs can induce tumorigenesis. It is becoming increasingly evident that assessment of biological effects of man-made EMFs/EMR based solely on thermal approach used in recommendations by certain international regulatory agencies, including the International Commission on Non-Ionizing Radiation Protection (ICNIRP), requires urgent and significant re-evaluation. We conclude that available scientific data strongly point to the need for re-elaboration of the current safety limits for man-made EMF exposures. We also emphasize that the everyday exposure of the population to WC EMFs/EMR should be regulated based on the Precautionary Principle, which implies maximum restriction of the risk factor till new, more unambiguous conclusions can be drawn regarding its safety.