ABSTRACT

Pesticide application increases crop yield by controlling, repelling, or destroying pests; but their excessive use cause harmful effects to various life forms including humans. When applied in large amounts, the agricultural pesticides move longer distances and can reach the water table at observable concentration. Consequently, pesticides can contaminate the areas which are far away from the sites where they were used actually. Among different groups of pesticides, organophosphorus pesticides (OPs) are applied globally and constitute the crucial and most commonly applied group which accounts for almost 36% of the entire world market. Methyl parathion (MP) is one of the most commonly used OPs. It has been recorded across the world that excessive use of OPs leads to the contamination of soil and water bodies and exposure to OPs causes disastrous effects to human health, various life forms and ecosystems. Thus, decontaminating pesticide contaminated area is a costly affair. Microorganisms play an important role in biodegradation of pesticides due to their adaptive nature to the environment that is contaminated. Mostly, organophosphorus compounds (OPCs) are completely mineralized by the microorganisms. Microorganisms degrade most of the OPCs as carbon or phosphorus source. From microbes, different enzymes have been isolated for studying and understanding the pathways involved in the biodegradation of OPs.