ABSTRACT

Computer-aid diagnostic (CAD) has emerged as a highly innovative research topic in diverse fields which includes medical imaging systems, radiology diagnostics, and so on. These are the systems that majorly assist doctors by the way of interpretation of medical data or images. In the diagnosis of knee joint disorder technique, both time and frequency-based analysis can be done. These non-stationary and non-linear signals are processed into three important methods, namely VMD, TVF-EMD, and CEEMDAN. To analyze the vibroarthrographic (VAG) signal, the initial stage is to compute the mode strategies termed as intrinsic mode functions (IMFs) which can be attained only after performing the transformations. In our chapter, we analyzed Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) for computing the mode signals. The CEEMDAN method utilized the time and frequency data for the available features. The feature extraction depends purely on pixel intensity and the statistical parameters. The classification of available data samples is done through the Least Square Support Vector Machine (LS-SVM) and SVM—Recursion of Feature Elimination (SVM-RFE) for the efficient analysis of healthy and unhealthy data samples.