ABSTRACT

In wireless communication applications, the MIMO-OFDM system plays a vital role. The multiple inputs and multiple outputs components of the MIMO process were the focal points. The communication process aims to reduce energy consumption at the original transmission input signal level while also improving the effectiveness of wireless communication applications. The hardware-based VLSI architecture will be used to modify this technology. This architecture is designed to improve the performance of the transceivers in 802.11 MIMO-OFDM systems. This system uses Matlabsimulink software and a hardware FPGA board to construct a 4*4 MIMO-OFDM architecture. Matlab simulation is used to convert VHDL code and verify the output for the VLSI simulation graph. To optimize the transmission timing in the MIMO architecture process, design the blocks in the simulink 96unit and alter the block layout in the overall OFDM-MIMO unit, as well as build the sub-system functions. The hardware architecture for the Simulink 802.11 MIMO-OFDM system design is implemented using the system generator and Xilinx software. The design technique for optimizing the hardware program design process for MIMO encode and decode processes, as well as transceiver operations, using VHDL code. The goal of the simulation is to organize the MIMO-OFDM blocks and increase the energy efficiency of wireless communication systems.