ABSTRACT

All kinds of sudden disasters occur frequently, causing serious impacts such as casualties, economic losses, and social disorder. Pre-disaster evacuation is the most direct and effective way to reduce casualties. Meanwhile, the distribution of relief supplies is also an important emergency measure to improve the physiological endurance of victims. To solve the problem of organizing the effective evacuation of the masses before the disaster and reasonably allocating emergency supplies, the overall optimization strategy of personnel evacuation and supplies allocation among multiple service facilities is studied. In the modeling process, the interests of the people who have not been evacuated are measured by the penalty coefficient, combined with the travel costs of the people, supplies transportation costs, and purchase costs in the network transportation system, and finally, the dynamic programming model is established with the optimization goal of minimizing the total system cost. In this paper, through GAMS platform programming, numerical experiments are carried out on the model under the 17-node road network to verify the feasibility of the model and to provide an auxiliary decision-making reference for the formulation of safe evacuation plans.