ABSTRACT

Research of cellular and molecular processes by way of histological methods allows for some insight but comes with a fundamental set of constraints that are challenging to overcome. Traditional histological methods are laborious, as well as severely limiting for in-depth study of developmental processes or disease processes in vivo. In traditional histology, fixing and sectioning tissue necessarily eliminates its dynamic function, while tissue section thickness limits the scope of investigation with conventional imaging tools. Noninvasive in vivo study of tissues and biomarkers is therefore paramount in gaining a fuller understanding of the pathophysiology surrounding conditions like congenital heart disorders. Light-sheet fluorescence microscopy (LSFM) is a powerful and noninvasive optical microscopy tool that can image in vivo tissue function in 4D (3D + time). LSFM boasts benefits such as short pixel dwell time (and therefore minimal photobleaching) while maintaining the ability to image a high dynamic range, as well as deep-tissue optical sectioning. Researchers have been seeking to overcome this problem by developing tissue-clearing techniques to attempt to homogenize the refractive index across the tissue via the removal of light-scattering pigments and lipids.