## ABSTRACT

Stochastic geometry studies randomly generated geometric objects. The present chapter deals with some discrete aspects of stochastic geometry. We describe work that has been done on finite point sets, their convex hulls, infinite discrete point sets, arrangements of flats, and tessellations of space, under various assumptions of randomness. Typical results concern expectations of geometrically defined random variables, or probabilities of events defined by random geometric configurations. The selection of topics must necessarily be restrictive. We leave out the large number of special elementary geometric probability problems that can be solved explicitly by direct, though possibly intricate, analytic calculations. We pay special attention to either asymptotic results, where the number of points considered tends to infinity, or to inequalities, or to identities where the proofs involve more delicate geometric or combinatorial arguments. The close ties of discrete geometry with convexity are reflected: we consider convex hulls of random points, intersections of random halfspaces, and tessellations of space into convex sets.