ABSTRACT

Material issues in III-V alloy semiconductors and our current understanding of degradation in III-V semiconductor lasers and LED’s are systematically reviewed. Generation of defects and thermal instability are among these issues for these systems. Defects introduced during crystal growth are classified into two types: interface defects and bulk defects. Defects belonging to the former type are stacking faults, V-shaped dislocations, dislocation clusters, microtwins, inclusions, and misfit dislocations, and the latter group includes precipitates and dislocation loops. Defects in the substrate can also be propagated into the epi-layer. Structural imperfections due to thermal instability are also found. They are quasi-periodic modulated structures due to spinodal decomposition of the crystal either at tne liquid/solid interface or growth surface, and atomic ordering which also occurs on the growth surface through migration and reconstruction of the deposited atoms. Three major degradation modes, rapid degradation, gradual degradation, and catastrophic failure, are discussed. For rapid degradation, recombination-enhanced dislocation climb and glide are responsible for degradation. Differences in the ease with which these phenomena occur in different hetero-structures are presented. Based on the results, dominant parameters involved in the phenomena are discussed. Gradual degradation takes place presumably due to recombination enhanced point defect reaction in GaAlAs/GaAs-based optical devices. This mode is also enhanced by the internal stress due to lattice mismatch. However, we do not observe this mode in InGaAsP/InP-based optical devices. Catastrophic failure is found to be due to catastrophic optical damage at a mirror or at a defect in GaAlAs/GaAs DH lasers, but not in InGaAsP/InP DH lasers. In each degradation mode, the role of defects in the degradation and methods of elimination of degradation are discussed.