ABSTRACT

Historically the material which was used earliest for its piezoelectric properties was single-crystal quartz. Crude sonar devices were built by Langevin using quartz transducers, but the most important application for Quartz was, and still is, frequency control. Crystal oscillators are today at the heart of every clock that does not derive its frequency reference from the ac power line. They are also used in every color television set and personal computer. In these applications at least one (or more) “quartz crystal” controls frequency or time. This explains the label “quartz” which appears on many clocks and watches. The use of quartz resonators for frequency control relies on another unique property. Not only is the material piezoelectric (which allows the excitation of mechanical vibrations), but the material has also a very high mechanical “Q” or quality factor (Q > 100, 000). The actual value depends on the mounting details, whether the crystal is in a vacuum, and other details. Compare this value to a Q for PZT between 75 and 1000. The Q factor is a measure of the rate of decay of the vibration and thus the mechanical losses of an excitation with no external drive. A high Q leads to a very sharp resonance and thus tight frequency control. For frequency control it has been possible to find orientations of cuts of quartz that reduce the influence of temperature on the vibration frequency.