ABSTRACT

ABSTRACT This article presents a novel methodology to select the optimal maintenance strategy of an offshore wind structural component, providing a flexible and reliable support to decision-making and balancing inspection, repair and failure costs. The procedure to create a “Point-Based” Partially Observable Markov Decision Process (POMDP) is described and a calibrated fracture mechanics model is introduced to assess the deterioration of the structure. The methodology is then tested for a tubular joint through a 60-states POMDP, obtaining the optimal maintenance policy in low computational time and in good agreement with common Risk-Based Inspection (RBI) methods.