ABSTRACT

The classical electromagnetic phenomena are consistently described by Maxwell’s equations; these vector (see Appendix 1A) equations in the form of partial differential equations are ∇ × E r , t = − ∂ B r , t ∂ t , https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781315272351/41040b79-9956-496a-ac34-683fa4364729/content/eqn1_1.jpg"/> ∇ × H r , t = J r , t + ∂ D r , t ∂ t , https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781315272351/41040b79-9956-496a-ac34-683fa4364729/content/eqn1_2.jpg"/> ∇ ⋅ D = ρ V , https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781315272351/41040b79-9956-496a-ac34-683fa4364729/content/eqn1_3.jpg"/> ∇ ⋅ B = 0 , https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781315272351/41040b79-9956-496a-ac34-683fa4364729/content/eqn1_4.jpg"/> where, in standard (RMKS) units, E is the electric field intensity (V/m), H the magnetic fieldintensity (A/m), D the electric flux density (C/m2), B the magnetic flux density (Wb/m2), J the volume electric current density (A/m2), and ρ V the volume electric charge density (C/m3).