ABSTRACT

Chloride attack is known as one of the major causes of concrete degradation. To improve durability of concrete structures it is essential to understand chloride transport in concrete. One of the situations often encountered in civil engineering constructions is wick action. This is the situation where there is a supply of moisture and dissolved salt on one side of material, whereas the other side is exposed to continuous drying in the open air. Here wick action results in fast transport of salt over a large distance.

To have an insight into the transport mechanisms of chloride through concrete during wick action a numerical model has been developed for steady state wick action. To validate the designed model Nuclear Magnetic resonance (NMR) technique has been utilized for quantitative concentration profiling of moisture and sodium ions semi-simultaneously.