Skip to main content
Taylor & Francis Group Logo
    Advanced Search

    Click here to search products using title name,author name and keywords.

    • Login
    • Hi, User  
      • Your Account
      • Logout
      Advanced Search

      Click here to search products using title name,author name and keywords.

      Breadcrumbs Section. Click here to navigate to respective pages.

      Chapter

      Improvement of a bedload transport rate measuring system in sediment bypass tunnels
      loading

      Chapter

      Improvement of a bedload transport rate measuring system in sediment bypass tunnels

      DOI link for Improvement of a bedload transport rate measuring system in sediment bypass tunnels

      Improvement of a bedload transport rate measuring system in sediment bypass tunnels book

      Improvement of a bedload transport rate measuring system in sediment bypass tunnels

      DOI link for Improvement of a bedload transport rate measuring system in sediment bypass tunnels

      Improvement of a bedload transport rate measuring system in sediment bypass tunnels book

      ByT. Koshiba, C. Auel, D. Tsutsumi, S.A. Kantoush, T. Sumi
      BookRiver Sedimentation

      Click here to navigate to parent product.

      Edition 1st Edition
      First Published 2016
      Imprint CRC Press
      Pages 8
      eBook ISBN 9781315623207
      Share
      Share

      ABSTRACT

      For long term use of dams, it is required to develop methods of sediment management in reservoirs. As one method, Sediment Bypass Tunnels (SBT) are operated in Japan and Switzerland to prevent reservoir sedimentation. SBT reduces sedimentation in reservoirs by routing the incoming sediments around the dam. SBT, however, is prone to severe invert abrasion caused by high sediment flux. Therefore, it is necessary to establish a measurement system of sediment transport rates in the SBT. A geophone was experimentally investigated in a laboratory flume at ETH Zurich. The sediment transport rate is calculated based on the plate vibration caused by hitting of gravels. In this paper, in order to alleviate disadvantages of a geophone, two newly developed sensor systems, a plate microphone and plate vibration sensor, are suggested and the results of their calibration experiments are shown. Finally, they are compared with the existing methods.

      T&F logoTaylor & Francis Group logo
      • Policies
        • Privacy Policy
        • Terms & Conditions
        • Cookie Policy
        • Privacy Policy
        • Terms & Conditions
        • Cookie Policy
      • Journals
        • Taylor & Francis Online
        • CogentOA
        • Taylor & Francis Online
        • CogentOA
      • Corporate
        • Taylor & Francis Group
        • Taylor & Francis Group
        • Taylor & Francis Group
        • Taylor & Francis Group
      • Help & Contact
        • Students/Researchers
        • Librarians/Institutions
        • Students/Researchers
        • Librarians/Institutions
      • Connect with us

      Connect with us

      Registered in England & Wales No. 3099067
      5 Howick Place | London | SW1P 1WG © 2022 Informa UK Limited