ABSTRACT

The investigated slow sliding speeds presented in this work enable the understanding of the wear behavior on aluminum alloys and could possibly facilitate the completion of the previously proposed wear mechanism map for aluminum at this slow sliding speed range. Dry sliding block-on-ring wear tests were carried out on aluminum alloys, AA5754 (Al-Mg), AA6082 (Al-Mg-Si), and AA7075 (Al-Zn-Cu), at a very slow sliding speed range (<0.01 m/s). A bearing steel ring of AISI 52100 was used as the counterbody. Tests were performed at varying contact pressures, 20, 100, and 140 MPa, and sliding speeds ranging from 0.001 to 1.5 m/s. The wear tracks and debris collected were examined by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD), with the aim of analyzing their morphology and composition. At relatively slow sliding speeds (>0.01 m/s), the specimens exhibited a wear process placed at the mild wear regime, characterized by oxidation and delamination mechanisms of both the aluminum specimen and the steel ring. However, at very slow speed range (<0.01 m/s), an increase in the wear rate and the friction coefficient is observed for all of the aluminum alloys, thus suggesting that an alternative wear mechanism could be taking place.