ABSTRACT

The need for an efficient one-step process for MIBK production is of heightened importance today in this era of rising energy costs and increased environmental regulation and presents an excellent opportunity for the application of catalytic distillation (CD) technology (4). The CD reactor combines catalytic reaction and separation in a single distillation column. As a consequence of this process intensification, a reduction in operating and capital expenditures may be realized (5). Within a CD reactor, heterogeneous catalyst is immobilized within one or more discrete reaction zones while liquid and vapour pass through the reactor in a counter current fashion. The continuous product removal from the reaction zone due to the distillation action shifts the reaction in favour of product formation in accordance with Le Chatelier’s Principle resulting in product yields much greater than the theoretical equilibrium conversion would allow. Since the reaction occurs in a boiling medium, excellent temperature control is achieved which is often critical in organic synthesis, and mitigates hot spot formation (5). In addition, since heat transfer is maximized in a boiling medium, the energy evolved from the exothermic reaction is efficiently converted to drive the distillation process, which could lead to substantial energy savings and a reduction of CO2 emissions from power production facilities (5). CD is a promising reactor technology for the MIBK synthesis since the first two reaction steps, particularly the aldol condensation of acetone, are known to be equilibrium limited and the overall synthesis is complex (4). Patents on the application of CD for the synthesis of MIBK have appeared (6,7). However, there is no experimental data reported on the one step synthesis of MIBK carried out in a CD pilot plant operating in a continuous mode.