ABSTRACT

Molecular modeling has played a key role in the development of our present understanding of the details of many chemical processes and molecular structures. From atomic-scale modeling, for example, much of the details of drug interactions, energy transfer in chemical dynamics, frictional forces, and crack propagation dynamics are now known, to name just a few examples. Similarly, molecular modeling has played a central role in developing and evaluating new concepts related to nanometer-scale science and technology. Indeed, molecular modeling has a long history in nanotechnology of both leading the way in terms of what in principle is achievable in nanometer-scale devices and nanostructured materials, and in explaining experimental data in terms of fundamental processes and structures.