ABSTRACT

Process planning represents the link between engineering design and shop floor manufacturing. More specifically, it is the function within a manufacturing facility that establishes the processes and process parameters to be used in order to convert a piece-part from its original form to a final form that is specified on a detailed engineering drawing. For machining, process planning includes determination of the specific operations required and their sequence, which include tooling, fixturing, and inspection equipment. In some cases, the selection of depth of cut, feed rate, and cutting speed for each cut of each operation is also included in the process planning for a part. Due to the advent of computer technology and great market need for short production lead time, there has been a general demand for computeraided process planning (CAPP) systems to assist human planners and achieve the integration of computeraided design (CAD) and computer-aided manufacturing (CAM). Moreover, the emerging product design practice employing the design for manufacturing (DFM) philosophy also needs a CAPP system to generate the best process plan for a given part for manufacturing evaluation. In general, a CAPP system is required to be able to provide the following supporting roles to design and manufacturing:

1. Capable of conducting manufacturability assessment on a given part and generating modification suggestions for the poor design features.