ABSTRACT

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 Spirulina Antiviral Studies In Vitro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 Spirulina Antiviral Studies In Vivo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 Spirulina Chemical Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 Spirulina Antiviral Chemical Structures and their Antiviral Mechanisms . . . . . . 235

Antiviral Polysaccharides. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 Calcium Spirulan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 Spirulan-like. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 Immulina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Sulfoglycolipids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 Antiviral Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

Allophycocianin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 Carbohydrate-Binding Proteins (CBP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Spirulina Patent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

Spirulina now named Arthrospira is a cyanobacteria that belongs to kingdom Monera and division Cyanophyta. Cyanobacterias also know as blue-green alga, have been consumed as a food for many centuries. Traditionally it was used by Mexicans during the Aztec civilization, and it is currently used by the natives in the Lake Chad area.1,2 The most commonly used species of Spirulina for nutritional supplements are Spirulina platensis and Spirulina maxima. They are produced commercially and sold as food supplement in health food stores around the world. Early interest in Spirulina was focused mainly on its potential as a source of protein, vitamins,

5256X: “5256x_c011” — 2007/8/31 — 15:10 — page 228 — #2

A (β-carotene), and like γ -linolenic acid (GLA). Recently more attention has been given to the study of its therapeutic effects, which include reduction of cholesterol and nephrotoxicity by heavy metals, anticancer properties, protection against radiation, and enhancement of the immune system.3 Spirulina also possesses other biological functions such as antiviral, antibacterial, antifungal, and antiparasite activities.4-6,1

Actinomycetes have been the most prolific producers of new bioactive metabolites, and at the present time, yield known compounds at a rate in excess of 95% of all active leads discovery in primary screening. Therefore, the interest in identifying naturally occurring molecules with antiviral properties has been largely intensified, mainly searching for new sources of cultivable microorganisms. A high priority has been given for new antiviral drugs against human immunodeficiency virus type 1 (HIV-1), which has caused the most important pandemic disease, the acquired immunodeficiency syndrome (AIDS), since 1981.