ABSTRACT

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

An understanding of atomic and molecular interactions and collisions is essential to the study of cold and ultracold molecules. Collisions govern the lifetime of molecules in traps and determine whether proposed cooling schemes will work. Once atoms and molecules are in the ultracold regime, the extent to which their interactions can be controlled depends on a detailed understanding of their collisional properties. The purpose of this chapter is to outline atomic and molecular collision theory and describe the special features that are important to the study of cold molecules.