ABSTRACT

Past effort in the seismic design of concrete bridges has been on detailing of bridges to prevent collapse. During earthquakes, reinforced concrete bridge columns are designed to undergo cracking, spalling, and yielding of steel and provide significant rotational capacity at plastic hinges so that the integrity of the overall structure is maintained. With proper design and construction, this objective can be met. However, the serviceability of the bridge after the earthquake is in question. The level of damage to different columns of a bridge varies depending on the intensity of the ground shaking, type of earthquake, and the force/ deformation demand on individual members. Based on the inspection of the damaged columns engineers have to determine whether the bridge is sufficiently safe to be kept open to traffic. They should also recommend repair methods for the columns. Any delay in opening of the bridge to traffic can have severe consequences on the passage of emergency vehicles, detour lengths, and traffic congestion in the area. Rapid and effective repair methods are needed to enable quick opening of the bridge to minimize impact on the community.