ABSTRACT

A diffusion-based mathematical model is presented for batch drying of corn in a novel rotating jet spouted bed device under constant as well as intermittent drying conditions. Such a device is suited for drying of large particles (e.g. grains, beans, seeds, etc.) for which internal heat and mass transfer rates control the drying kinetics. Based on literature data for moisture diffusivities the model predictions are compared with experimental data for both continuous and time-dependent air supply and/or heat input. Effects of relevant parameters are evaluated and discussed in the light of potential practical applications.