Despite the enormous potential applications of polymer/layered silicate nanocomposites (PLSN) [1], their commercialization, which was estimated to exceed 500 kt/year by 2009 [2], grew slowly in the last years mainly due to difculties in dispersing the nanosized silicate layers within the polymer bulk at the industrial scale. Commercial organoclays consist of powders whose particles have dimensions in the 1-30 μm range, and each particle contains an average of over 1 million platelets. Thus, it is a real challenge to practically reach the high level of clay exfoliation that would grant the performance improvements theoretically anticipated for these materials. Recent studies carried out by small-angle x-ray scattering, light scattering, and electron imaging have shown that large-scale morphological disorder is present in nanocomposites, regardless of the level of dispersion, leading to substantial lowering of mechanical properties, compared to predictions based on idealized nanocomposite morphology [3].